STAT 2593 Lecture 021 - Statistics and their Distributions

Dylan Spicker

Statistics and their Distributions

1. Understand and explain sampling distributions.

2. Differentiate between sampling distributions and population distributions.

Ultimately, the goal of statistics is to learn information about a population using observations from a sample.

Population

Population Sample

Population

Sample

When we compute a statistic from a sample, this will not generally equal the underlying parameter.

- When we compute a statistic from a sample, this will not generally equal the underlying parameter.
- Instead, we wish to characterize how reliable our statistics are as proxies of the underlying parameters.

- When we compute a statistic from a sample, this will not generally equal the underlying parameter.
- Instead, we wish to characterize how reliable our statistics are as proxies of the underlying parameters.
- In order to do this, we need to understand the distribution of the statistic.

- When we compute a statistic from a sample, this will not generally equal the underlying parameter.
- Instead, we wish to characterize how reliable our statistics are as proxies of the underlying parameters.
- In order to do this, we need to understand the distribution of the statistic.
 - This is called the **sampling distribution**.

Everytime that a sample is drawn from the population, and then a statistic is computed, we expect that there will be random variation. If you were to conduct this process again, you would expect to receive a different sample, and from this different sample, you'd compute a different value for the statistic.

What if we could run this experiment repeatedly?

Population: P=0.195

Population: P=0.195

Sample 1: P=0.2

Population: P=0.195

Population: P=0.195

Because statistics are computed based on data which is random, a statistic is also a random variable.

- Because statistics are computed based on data which is random, a statistic is also a random variable.
- ► The sampling distribution is the distribution of the statistic.

- Because statistics are computed based on data which is random, a statistic is also a random variable.
- ► The sampling distribution is the distribution of the statistic.
- It can be thought of as arising from repeated experiments, many times over.

- Because statistics are computed based on data which is random, a statistic is also a random variable.
- ► The sampling distribution is the distribution of the statistic.
- It can be thought of as arising from repeated experiments, many times over.
 - This can be determined through simulation.

Statistics are random variables and correspondingly have a distribution.

► The distribution of a statistic is called the sampling distribution.

Sampling distributions can be assessed to quantify the reliability of estimates, and are an important component of statistical inference.